

MATHEMATICS

9709/12 October/November 2016

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on
 from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and
 B marks are not given for fortuitously "correct" answers or results obtained from incorrect
 working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page	4	Mark Sc				Syllabus	Paper	
			Cambridge International AS/A Le	evel – Octo	ber/N	November 2016	9709	12	
1 2 (i	i)	Use 2sin	$=8(4x+1)^{\frac{1}{2}} \div \frac{1}{2} \div 4 (+c)$ s x = 2 and y = 5 c = -7 $2x = 6\cos 2x$ 2x = k	B1 B1 M1 A1 M1	[4]	Correct integrand $\div 4$. Ignore <i>c</i> . Substitution of co to find c. $y = 4\sqrt{4x+1} - 7$ Expand and collect from sin \div cos	rrect values i	nto an inte	grand
		\rightarrow	$\tan 2x = 3 \text{ or } k = 3$	A1	[2]	cwo			
(ii		<i>x</i> =	$(\tan^{-1}(their k)) \div 2$ $(71.6^{\circ} \text{ or } -108.4^{\circ}) \div 2$ $x = 35.8^{\circ}, -54.2^{\circ}$ $0.624^{\circ}, -0.946^{\circ}$ $0.198\pi^{\circ}, -0.301\pi^{\circ}$	M1 A1 A1√	[3]	Inverse then ÷2. s [↓] on 1st answer + extra solutions in Both SR A1A0	-/ - 90° if in		e but no
3 (i	i)	$2x^2$ $(x =$	-6x+5>13 -6x-8(>0)) -1 and 4. 4, $x < -1$	M1 A1 A1	[3]	Sets to 0 + attemp Both values requi Allow all recogni	red	n.	
(ii	i)		=4x-6 $-6=2$	M1* DM1 A1 M1*	[3]	Equates and sets t Use of discrimina Sets (their $\frac{dy}{dx}$) =	nt		
		<i>x</i> =	$2 \rightarrow y = 1$ ng their (2,1) in $y = 2x + k$ or $y = 2x^2 - 6x + 5$ $\rightarrow k = -3$	DM1 A1		Uses <i>their</i> $x = 2$ a	and <i>their</i> $y = 1$	1	
			$-\pi$ 3	AI	[3]				

	Page 5	Mark Sc	heme			Syllabus	Paper]
		Cambridge International AS/A Le	evel – Octo	ober/N	November 2016	9709	12	
4	(3 - Ter	$\operatorname{rm in} x = \frac{nx}{2}$ $-2x)(1 + \frac{nx}{2} +) \rightarrow 7 = \frac{3n}{2} - 2$ $\rightarrow n = 6$ $\operatorname{rm in} x^{2} = \frac{n(n-1)}{2} \left(\frac{x}{2}\right)^{2}$ efficient of $x^{2} = \frac{3n(n-1)}{8} - \frac{2n}{2}$ $= \frac{21}{4}$	B1 M1 A1 B1 M1 A1	[6]	Could be implied (Their 2 terms in . May be implied b Considers 2 terms aef			
5	a ² M M Sul	a, 0) and B(0, b) $a + b^{2} = 100$ has coordinates $\left(\frac{a}{2}, \frac{b}{2}\right)$ lies on $2x + y = 10$ $a + \frac{b}{2} = 10$ $b \rightarrow a^{2} + (20 - 2a)^{2} = 100$ $\left(10 - \frac{b}{2}\right)^{2} + b^{2} = 100$ a = 6, b = 8.	B1 M1* B1√ [↑] M1* DM1	[6]	soi Uses Pythagoras v ∲ on their A and B Subs into given lin b. Forms quadratic in cao	3. ne, using the		a and

	Page 6					Syllabus	Paper	
		Cambridge International AS/A Le	9709	12]			
6 (i)		$\frac{r}{0} = \sin 0.6 \text{ or } \frac{r}{10} = \cos 0.97$ r $BD = \sqrt{200 - 200 \cos 1.2} (=11.3)$	M1		Or other valid alt	ernative.		
	r	= 10×0.5646 , $r = 10 \times \sin 0.6$, = $10 \times \cos 0.971$ or $r = \frac{1}{2} BD$ $\Rightarrow r = 5.646$ AG	A1	[2]				
(ii)	θ 0. S N	fajor arc = $10(\theta)$ (= 50.832) = $2\pi - 1.2$ (= 5.083) r C = $2\pi \times 10$, Minor arc = 1.2×10 emicircle = 5.646π (= 17.737) fajor arc + semicircle	M1 B1		$\theta = 2\pi - 1.2$ or π - Implied by 5.1	- 1.2		
	=	68.6	A1	[3]				
(iii)	A	trea of major sector $= \frac{1}{2}10^{2} (\theta) (= 254.159)$ trea of triangle <i>OBD</i> $= \frac{1}{2}10^{2} \sin 1.2 (= 46.602)$	M1 M1		$\theta = 2\pi - 1.2 \text{ or } \pi -$ Use of $\frac{1}{2}ab\sin C$ or		blete method	1
	A	trea = semicircle + sector + triangle (= $50.1 + 254.2 + 46.6$) = 351	A1	[3]				
7 (i)	$-\frac{c}{c}$	$\frac{\mathrm{ly}}{\mathrm{lx}} = \frac{-3}{\left(2x-1\right)^2} \times 2$	B1 B1	[2]	B1for a single corwithout ×2.	rect term (ui	nsimplified)	
(ii)) e.	g. Solve for $\frac{dy}{dx} = 0$ is impossible.	B1√ [^]	[1]	Satisfactory expla	nation.		
(iii)		$f x = 2, \ \frac{dy}{dx} = \frac{-6}{9} \text{ and } y = 3$	M1*		Attempt at both n	eeded.		
		erpendicular has $m = \frac{9}{6}$	M1*		Use of $m_1m_2 = -1$	numerically	•	
		→ $y-3=\frac{3}{2}(x-2)$ hows when x=0 then y=0 AG	DM1 A1		Line equation using	ng (2, their 3) and their <i>n</i>	n.
 	S	AU AU		[4]				
(iv)		$\frac{\mathrm{d}x}{\mathrm{d}t} = -0.06$ $\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} \rightarrow -\frac{2}{3} \times -0.06 = 0.04$	M1 A1	[2]				

	F	Page	e 7	Mark Sc				Syllabus	Paper	
				Cambridge International AS/A Level – October/November 2016				9709	12	
8	(a)	(i)	200	0+(15-1)(+/-5)	M1		Use of <i>n</i> th term w	with $a = 200$,	n = 14 or 1	5and
			= 13	30	A1	[2]	<i>d</i> = +/- 5.			
		(ii)		400 + (n-1)(+/-5)] = (3050) $5n^{2} - 405n + 6100 (= 0)$ 20	M1 A1 A1	[3]	Use of S_n $a=200$ a	and $d = +/-5$	5.	
	(b)			$, ar^{5} \rightarrow r = \frac{1}{2}$ $= \frac{a(1 - \frac{1}{2}^{6})}{\frac{1}{2}} \rightarrow a = 16$	M1 A1 M1 A1	[4]	Both terms correct Use of $S_n = 31.5$ v		ic <i>r</i> .	
		(ii)	Sun	n to infinity = $\frac{16}{\frac{1}{2}}$ = 32	B1√ [^]	[1]	\checkmark^{+} for their <i>a</i> and <i>r</i>	with $ r <$	1.	
9	(i)		-4 -	- 6 - 6 = -16	M1		Use of $x_1x_2 + y_1y_2$	$z_{+}z_{1}z_{2}$ on the	ir $\overrightarrow{OA} \& \overrightarrow{OB}$	3
			$\sqrt{x_1^2}$	$\frac{1}{x_1^2 + y_1^2 + z_1^2}$ or $\sqrt{x_2^2 + y_2^2 + z_2^2}$	M1		Modulus once on	either their	\overrightarrow{OA} or \overrightarrow{OB}	
				$7 \times \cos \theta = -16$ $\theta = 139.6^{\circ} \text{ or } 2.44^{\circ} \text{ or } 0.776\pi$	M1 A1	[4]	All linked using the second se	heir $\overrightarrow{OA} \& \overrightarrow{O}$	B	
	(ii)		Mag	$\vec{c} = \mathbf{c} - \mathbf{a} = \begin{pmatrix} 0\\ 8\\ 6 \end{pmatrix}$ gnitude = 10	B1					
			Sca	$\lim_{n \to \infty} \frac{15}{their 10} \times \begin{pmatrix} 0\\ 8\\ 6 \end{pmatrix} = \begin{pmatrix} 0\\ 12\\ 9 \end{pmatrix}$	M1 A1	[3]	For 15 × <i>their</i> uni	t vector.		
	(iii)		$ \begin{pmatrix} 2 \\ 6 \\ 5 \end{pmatrix} $	$ \begin{array}{c} +2p \\ -2p \\ -p \end{array} \right) $	B1		Single vector soi l			n
			\rightarrow -	-2(2+2p) + 3(6-2p) + 6(5-p) = 0 $p = 2\frac{3}{4}$	M1 A1	[3]	Dot product of (p	OA + OC)	and $OB = 0$	J.

Pa	age 8	Mark	Scheme			Syllabus	Paper	
	•	Cambridge International AS/A	Level – Octo	ober/l	November 2016	9709	12	
10 (i)	3 ≼	$\xi f(x) \leq 7$	B1 B1	[2]	Identifying both 3 inequality. Completely corree NB $3 \le x \le 7$ sco	ct statement.	rectly stating	g one
(ii)			B1* DB1	[2]	One complete osc between 0 and π . All correct, initial f(x)=0			
(iii)	$ \rightarrow \\ 0.5 \\ \frac{\pi}{100} + 1 $	$\sin 2x = 6 \rightarrow \sin 2x = -\frac{1}{2}$ $2x = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}$ $x = \frac{7\pi}{12} \text{ or } \frac{11\pi}{12}$ $83\pi \text{ or } 0.917\pi$ $-\frac{0.524}{2} \text{ or } \frac{2\pi - 0.524}{2}$ $3^{\circ} \text{ or } 2.88^{\circ}$	M1 A1 A1√	[3]	Make $\sin 2x$ the su $\sqrt[4]{}$ for $\frac{3\pi}{2} - 1^{st}$ ari in given range SR A1A0 for both	nswer from si	$n2x = -\frac{1}{2} \text{ or}$	ıly, if
(iv)	k =	$\frac{\pi}{4}$	B1	[1]				
(v)		$\ln 2x = 5 - y \to \sin 2x = \frac{1}{2}(5 - y)$ $^{1}(x) = \frac{1}{2} \sin^{-1} \frac{(5 - x)}{2}$	M1 M1 A1	[3]	Makes ±sin2x the Correct order of c dealing with " – " Must be a functio	operations inc	•	